
Acnet Data Requests/Settings
System Implementation

Thu, Sep 15, 1994

Introduction
The message formats for Acnet data requests/settings is described in the Acnet 

Design Note 22.28. It uses the Acnet header designed by Charlie Briegel to support 
generalized task-task communications across a network. The Network Layer software 
in the VME Local Stations supports these Acnet header-based messages. This note 
describes the implementation of the support for Acnet Data Services data acquisition 
and setting messages.

Message flow
When a request or setting message is received, it is directed to a well-known 

taskname RETDAT for requests and SETDAT for settings. (These 6-character network 
task names are encoded in the “Radix-50” form used by PDP-11 and Vax computers.) 
At initialization, the Acnet Request Task creates a message queue (called ACRQ) that is 
used to receive Acnet header-based messages directed to the taskname RETDAT or to 
the taskname SETDAT. NetCnct registers both tasknames to the Network Layer. (By 
directing both message types to the same queue, processing of the messages in original 
network order is assured. One can issue a setting command and immediately issue a 
request to read back the setting value and still be confident of obtaining the new 
setting, assuming a valid setting.)

Function NetCnct (taskName, queueId, eventMask, VAR taskId);

The eventMask is left zero, as the Request Task will simply wait on the message queue 
rather than wait on an event. The Request Task then enters an infinite loop that calls 
NetCheck to wait for a message and, upon receiving one, processes it.

Function NetCheck (taskId, timeOut, VAR msgRef);

When the function returns with valid status, the message type is checked as found in 
the first word of the Acnet header. If it is a USM (unsolicited message) with the CAN  
(cancel) bit set that was directed to RETDAT, the request identified by the message id is 
cancelled. If it is a USM that was directed to SETDAT, the setting message is processed 
immediately with no acknowledgment message.

If the message type is a request, the message following the header is checked. If it is a 
setting, it is processed immediately, and an acknowledgment is returned in the form of 
a status-only reply message (Acnet header only). If it is a request for data, then 3 
message blocks are allocated for support of the new request. (If the request specifies an 
existing active message id, then the existing request is cancelled.) The basic request 
block (type#12) houses the various parameters needed to monitor the request activity. 
Two pointers are included in that block that point to the other related allocated 
blocks—the internal ptrs block (type#14) and the answers block (type#9).

The basic Acnet request block (type #12) contains the array of device request blocks 
(DRB’s) and the frequency time descriptor (FTD). 



MBlkSize MBlkType=12

ReqAHdr ReqAHdr#by

LinkNext

Update Cntr

$00

$08

$10

$18

Ptr to internal ptrs block (#14) Ptr to answers block (#9)

Request Request#by

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

Acnet header

FTD cntr mxAnsLng #rPkts FTD

#bytes dOffset
device 
request block
(4 words)

…

$28

$30

$40

$48 additional DRB's

rdType# postPOff

Ptr to external req block (#9)

sMsgId sDNode nonLNode

The Internal Ptrs block (type #14) contains the array of internal ptrs that are used to 
update the request (build the answers) efficiently.

 

pBlkSize ptrsOff=8 nPtrs pBlkType

intPtr1ptrsOff

$00

intPtr2

…

The answers block (type #9) is an Acnet message block of the form used by the 
Network Layer software when the answers are to be returned to the requesting 
node/task. It also includes a pointer to the parent request block (type #12) for use by 
QMonitor for one-shot requests that need automatic cancellation.

Acnet Data Requests-Settings p. 2



MBlkSize MBlkType=9

HdrOff HdrLng

$00

$08

$10

$18 dest
Node netQFlag

FmtOff FmtLng

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

—

Ptr to xmitStat word

destNodeOff #bytes-2

MsgOff MsgLng XtrOff XtrLng

$30

Acnet header

$28

Ptr to request block (type#12)taskId —$20

$38 — —

$40 …answer data …

…

status

…answer datastatus …

additional answer packets

After the request support blocks have been filled, the basic request block is inserted 
into the chain of active data requests using INSCHAIN. It is inserted at a position 
adjacent to another request block made by the same node, if any, in order to increase 
the likelihood of combining the answer responses of multiple requests into the same 
network frames. Then the Update Task is triggered to update the request and build the 
first set of answers immediately.

The request message is processed as it resides in the network frame input buffer DMA’d 
into memory by the chipset. This processing includes “compiling” the request into the 
DRB’s and the internal ptrs array for later update processing. The message count word 
in the network frame buffer is decremented to signal to the network that the request 
message space is now free for future use. Note that initializing the request as it resides 
in the network buffer (instead of using NetRecv to copy it into the caller’s buffer) 
saves copying the ident arrays in the request, at the expense of the additional 
responsibility of decrementing the message count word when finished with the 
request message.

Acnet Data Requests-Settings p. 3



Updating requests
The Update Task scans through all active requests each cycle to update any that are 

due for processing. It checks for this new request block type (#12) and builds the 
answers accordingly. The read-type routines are called for each listype using the array 
of internal pointers to build the answer data.

When the Update Task has built answers that are to be returned to the requester, it 
invokes the NetQueue routine to do it. Just before that, however, it calls NetXChk to 
flush any existing queued messages that are going to a different node or use a 
different protocol type (different SAP) to the network chipset. This is to ensure prompt 
delivery of responses to different nodes and yet combine answer messages directed to 
the same node into the same frame for greater network efficiency.

Function NetXChk (newNode, newType): Integer;

Function NetQueue (taskId, VAR msgBlk, VAR xmitStat): Integer;

The Update Task flushes all queued messages to the network after it has processed all 
active requests each 15 Hz cycle.

Acnet Settings
Processing setting messages, as compared with data requests, is greatly simplified 

because it is all done immediately and no dynamic data structures need be prepared 
for later update processing. The destination task name of SETDAT indicates that the 
message is a setting.

The many set-type routines have been enhanced so that they now return error codes 
whenever they encounter errors. (Previously, the setting was simply ignored.) This 
error response word is used in the setting acknowledgment message. A zero status 
indicates no detected error in performing the setting. This acknowledgment is 
returned only if the setting message type is a request. If the setting message is a USM, 
no acknowledgment is returned.

Acnet Data Requests-Settings p. 4



Acnet Request Module Road Map
The organization of the routines in the ACREQ module is as follows, where an 

asterisk denotes a declared entry point:

*ACREQ

CANCEL REQUEST

ACDELETE

DOPTRS DOANSW

*ACDELCHK

*ACUPDNEW *ACUPDCHK

ACUPDATE

Acnet Data
Request/Setting 
Task

Update Task

QMonitor Task

SETTING

SETACK

ADJDATA
SETLOCAL

(in SETDATA module)

PPANABL PPESTATPPDGABL PPBSTAT

ADJABLK

MDANABL MDDGABL MDBSTAT

MDAFLGS

The upper collection of routines comprise the Acnet Data Request Task, which waits 
for a message directed to the destination taskname RETDAT or SETDAT and processes it. 
For a request message, the CANCEL routine searches the active list chain for a match 
against the message id (“list#”), the requesting node and source task id. If it finds a 
match, it calls ACDELETE to cancel that active request. The REQUEST is the bulk of the 
code which prepares the request block, internal pointers block and answers block for 
later processing by the Update Task. It uses several other routines to help break that 
job down into more manageable pieces.

For a setting message, the setting action is performed immediately. The system routine 
SETLOCAL is called to process each packet. An error return aborts the processing of any 
remaining settings in the message, and SETACK is invoked to deliver the setting 
acknowledgment status-only reply message.

The middle section is the ACDELCHK routine which is called by the QMonitor Task 
when it has detected the completion of transmission of an Acnet-type message (block 
type#9) with bit#6 and bit#5 of the NetQFlg word set in the block, indicating that the 
block is to be retained for re-use and that it is a Acnet protocol request as opposed to a 

Acnet Data Requests-Settings p. 5



DZero protocol request. It checks for the case of a one-shot Acnet data request that 
should be cancelled. So QMonitor has to recognize the type#9 message and be aware 
of the NetQFlg word. It also looks for the case of the type# 0xF9 and frees the memory 
of that block. (A type# 0xF9 block is an altered type#9 block no longer needed for 
holding an Acnet answer response but could not be freed when cancelling the Acnet 
request because bit#7 of the NetQFlg was set indicating that the block was queued for 
transmission to the network.)

The last section includes two entry points that are called by the Update Task to process 
type#12 requests during its traversal of the chain of active requests. ACUPDNEW updates 
the request only if it has never been updated before, whereas ACUPDCHK examines the 
FTD counter and updates the request only if it is due. ACUPDATE shepherds the actual 
updating of the request and queues an answer response to the network.

Error reporting for requests
A number of potential errors are detected when processing an Acnet data request 

message. For most of these, a response is returned to the requester consisting of a 
status-only reply, which includes only the Acnet header. Current error codes are as 
follows:

-32 spare
-33 invalid message size
-34 spare
-35 invalid #request packets
-36 dynamic memory unavailable
-37 invalid listype#
-38 invalid identype (error in listype table)
-39 invalid ident length for listype#
-40 invalid #bytes requested per ident
-41 invalid total #idents this request
-42 size of answers too large
-43 size of answers > max length given
-44 nonzero data offset not supported in request packet
-45 nonzero data offset not supported in setting packet
-46 invalid #setting packets
-47 invalid read routine type# (error in listype table)
-48 node# does not match this system’s node#
-49 invalid destination task name

In addition to the response to the requester, these errors are recorded in the Local 
Station in local variables of the Acnet Request Task. They can be inspected for 
diagnostic value (with suitable instruction). For each error, a data word is recorded for 
the last error of that type followed by a count word of the number of errors of that 
type that have occurred since the station was reset.

Another error that can be returned by the Network Layer itself is the following:
-21 destination task not connected to network (RETDAT or SETDAT)

This means that the 4-byte destination task name in the Acnet header was not 
recognized by the node that received it. For systems which have Network Layer 

Acnet Data Requests-Settings p. 6



support but have not yet been updated with the Acnet data request software, this will 
certainly result.

Setting acknowledgment error codes
The following list of errors can occur in response to a data setting message:

0 No error. Setting successful.
-65 System table not defined for this listype.
-66 Entry# (chan#, bit#, etc) out of range.
-67 Odd #bytes of data
-68 Bus error
-69 #bytes too small
-70 #bytes too large
-71 Invalid #bytes
-72 Set-type out of range (error in listype table)
-73 Settings not allowed for this listype
-74 Analog control type# out of range (error in analog descriptor)
-75 Invalid binary byte address in BADDR table
-76 Invalid mpx channel# (Linac D/A hardware)
-77 F3 scale factor out of range (motor #steps processing)
-78 No CPROQ table or co-proc# out of range
-79 Hardware D/A board address odd
-80 Bit# index out of range (associated bit control via channel)
-81 Bit# out of range for this system’s database
-82 Digital Control Delay table full (for software-formed pulses)
-83 Digital control type# out of range 1–15
-84 Co-processor command queue unavailable
-85 Co-processor invalid queue header
-86 Queue full or unavailable
-87 Dynamic memory allocation failed
-88 Error status from 1553 controller
-89 Invalid 1553 command for one word output
-90 Invalid 1553 Command Block address (must be multiple of 16)
-91 Invalid 1553 order code in first word of Command Block
-92 1553 interrupts not working
-93 Cannot initialize 1553 command queue
-94 No Q1553 table of pointers to 1553 controller queues
-95 Invalid Motor table
-96 Motor table full
-97 Invalid 9513 timing channel pair
-98 Timing event# out of range.
-99 Invalid data value.

-100 Invalid #bytes of text in Comment alarm control
-101 No DSTRM table of Data Stream queue pointers
-102 Data Stream queue type# out of range
-103 Data Stream queue not initialized
-104 No MMAPS table of memory-mapped board templates
-105 Invalid MMAPS table header
-106 Invalid MMAPS table entry size

Acnet Data Requests-Settings p. 7



-107 Invalid board# for MMAPS table
-108 Invalid directory entry in MMAPS table
-109 End of MMAPS table reached during template processing
-110 Invalid MMAPS command type code
-111 Invalid MMAPS loop params
-112 Invalid MMAPS nested loop
-113 spare
-114 Invalid listype#
-115 Invalid ident type# (error in listype table)
-116 Invalid ident length for this listype
-117 Little console settings switch disabled
-118 Little console external settings switch disabled
-119 Data Server setting not implemented
-120 Invalid listype for this Acnet property

Acnet Data Requests-Settings p. 8



Data format conversions
Special considerations of the Acnet protocol require support of several standard 

data formats. Logic is included that supports the following standard record structures:
ANALBL Analog Alarm Block
DGALBL Digital Alarm Block
BSTATS Basic Status
BCNTRL Basic Control
ESTATS Extended Status

These standard data formats are as follows:

ABStat Nominal Tolerance

tries
now

tries
needed

Evt#1
=00

Evt#2
=00 #trips

— —

—

—

Analog Alarm Block

Digital Alarm Block

ABStat Nominal=0/1 —

—

Mask=1

tries
now

tries
needed #trips

— —

Basic Status

Basic Control

0 0 0 0 0 0 0 0 1 - I 1 B A0 0

0 - - - - - 1 0 0 - I 1 B A0 0

I 2 bm by 2c B - - - - - - - -A N

I 2 bm by 2c B - - - - - - - -A - Analog alarm flags

Digital alarm flags

0/1

0/1

—

—

DE LE EV HI LO K2 K1 K0 AD Q1 Q0 — AI AB GB BP

DE LE EV HI LO K2 K1 K0 AD Q1 Q0 — AI AB GB BP

Evt#1
=00

Evt#2
=00

(Bytes swapped for Vax)

(Special adjustment for Bit# setting)

The alarm blocks are the most complex structure to support. The flag word must be 
edited to conform to the Acnet standard form in response to a data request. And it 
must be edited to the Local Station format in response to a setting. The other fields are 

Acnet Data Requests-Settings p. 9



similarly edited. The tries needed byte may be one or two, according to the 2x bit in 
the analog or binary alarm flags. The #trips word is returned as extra info in the alarm 
block. Event-related alarms are not supported.

A special adjustment must be made to accommodate data requests of less than 6 bytes 
for an analog alarm block. When the read-type routine is invoked to update the 
answers to such a request, the #bytes requested must be set to at least 6, or the read-
type routine will not return the analog alarm flags word that must be edited to make 
up the ABStat word in the reply. This adjustment also requires that 6 extra bytes be 
allocated in the answers block (type#9) in order to assure that the extra bytes 
requested of the read routine cannot be written beyond the end of the block.

For the case of the Basic Status property, the bytes of answers must be swapped to 
conform to the byte order of the DEC machines. This is also true of some forms of 
Basic Control, but the data sent with listype #21 (digital I/O via Bit#) is considered a 
word, where the hi byte is the digital control type# and the lo byte is the pulse delay 
(when used). So in this case, the bytes should not be swapped.

Limitations of present implementation
Features not supported in the initial version of Acnet request handling are the 

following:

SSDR-related requests
Event-style FTD’s
Data offset

It is not intended to support data requests of the “Data Server” type for the Acnet 
protocol. Idents in a request are ignored if they do not include the node# of the local 
station receiving the request in the first word of the ident. This means that one could 
send the same request to a group of nodes using the functional group multicast form 
of network addressing, and each node receiving the request would select out its own 
idents for answer response. (Obviously the requesting node would need to scan the 
original request in order to be able to match the answers with the questions.) 
Currently, however, the Acnet header-based protocols do not permit sending request 
messages to a group of nodes.

Comparison with “classic” protocol
The Acnet RETDAT/SETDAT protocol for data requests/settings is a very flexible 

protocol that serves multiple front end computers whose internal software may be 
organized quite differently. The SSDN component of the request/setting packets is the 
key that makes it work. The coding of the 8-byte SSDN structure can be designed for 
the needs of each front end; neither the console computers nor the central database 
cares what it is. It only must be correctly entered into the central database.

The “classic” protocol that has been used by the Local Station processors since 1982 
is designed to support that particular front end type. The concept of characterizing 
data requests in terms of arrays of idents to be processed in the same manner is used to 
optimize request update efficiency. Updating an array of channels with analog 
readings, for example, is distilled down to a 3 instruction loop with the loop count 
being the number of channels in the array.

Acnet Data Requests-Settings p. 10



This implementation of the RETDAT/SETDAT protocols does not rearrange the request 
into one that can be processed optimally. It can be enhanced at a later date if the extra 
effort is deemed to be worth the increase in efficiency.

ansNByt sNode
server 
request block
(4 words)

$40 ansOff ansAge

Acnet Data Requests-Settings p. 11


